可导的充要条件
-
可导的条件是什么
可导的条件:函数在该点的去心邻域内有定义;函数在该点处的左、右导数都存在;左导数=右导数。这与函数在某点处极限存在是类似的。 连续是可导的必要不充分条件,函数可导的充要条件是:函数在该点连续且左导数、右导数都存在并相等。连续的函数不一定可导,可导的函数一定连续。如果函数在区间内存在“折点,(如f(x)=x的x=0点)则函数在该点不可导 函数在一点可导定义:设f(x)在x0及其附近有定义...
日期:2025-09-06
可导的条件:函数在该点的去心邻域内有定义;函数在该点处的左、右导数都存在;左导数=右导数。这与函数在某点处极限存在是类似的。 连续是可导的必要不充分条件,函数可导的充要条件是:函数在该点连续且左导数、右导数都存在并相等。连续的函数不一定可导,可导的函数一定连续。如果函数在区间内存在“折点,(如f(x)=x的x=0点)则函数在该点不可导 函数在一点可导定义:设f(x)在x0及其附近有定义...
日期:2025-09-06