综合百科

可导的条件是什么

可导的条件:函数在该点的去心邻域内有定义;函数在该点处的左、右导数都存在;左导数=右导数。这与函数在某点处极限存在是类似的。

连续是可导的必要不充分条件,函数可导的充要条件是:函数在该点连续且左导数、右导数都存在并相等。连续的函数不一定可导,可导的函数一定连续。如果函数在区间内存在“折点,(如f(x)=x的x=0点)则函数在该点不可导

函数在一点可导定义:设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

导数的概念

导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量△x时,函数输出值的增量△y与自变量增量△x的比值在△xOa,ax0,f(x0)df(x0)/dx.

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x→f(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。

相关文章

  • 重大疾病保险的定义?
  • 保险买哪个保险公司比较好?
  • 结构性存款是什么意思?结构性存款的预期收益高吗?
  • 手机银行转账被骗如何追回?
  • 建设银行信用卡账单日当天刷卡什么时候还款?
  • 中国平安险种介绍
  • 博时安盈债券C安全吗?
  • 小树时代怎么样 小树时代可靠吗
  • 股票分红需要持有一年吗?股票持有多久才能分红?
  • 余额宝升级入口在哪?升级后有什么好处?
  • 懒人淘宝网,最全的淘宝技巧分享
  • 第三代网店,未来最具创新性的电子商务模式
  • 今天开始恋爱吧漫画,甜蜜爱情故事,让你心动不已
  • 传教士是什么姿势
  • 刺客信条1中文补丁 如何使用?
  • 大连开发区人力资源
  • 2021云南高考700分以上136人,7月22日云南高考录取情况
  • 劳动合同法第47条
  • 差差漫画登录页面在线弹窗
  • 高考题2022全国卷数学(中国校长网历年高考题下载word版)